

# **Convex Hulls**

## **Convexity definition:**

given a set  $k \subseteq \mathbb{R}^d$ , k is convex  $\iff \forall p,q, \in k : p\bar{q} \in k$ , i.e. when for each couple of points in k is possible to find a straight line connecting them fully contained in k





a non convex set

### Lemma:

if  $k_1,k_2$  are both convex sets, then  $k_1\cap k_2$  is convex too

## **Convex Hull**

the smallest convex set containing a subspace  $S\subset \mathbb{R}^d$  ,  $CH(S)=igcap_{k\ convex\supseteq S}k$  . we

will assume that S is finite and discrete.

**Tangent:** given a polygon p in 2d and a point q outside of P, a line touching P in exactly one point and passing through q

**Theorem:** CH(S) is a politope that has vertices in S

**Proof:** by induction over n = |S|

for |S| = 3, the CH(S) is the triangle made of the points, being the interception of the 3 halfspaces separated by the lines passing through 2 points

for |S| > 3, we choose a point  $p \in S$ , create  $S' = S \setminus \{p\}$  and  $C' = CH(S'), s.t.C' \subseteq S' \subseteq S$  and we construct CH(S) with C' and p

- if  $p\in C'$  we do nothing
- if p 
  otin C' we find the tangents through p to C' a and b, then  $CH(S) = C' \cup riangle abp$



it follows that  $\forall \ convex \ k \supseteq S : C' \subseteq k, \triangle abp \subseteq k \Rightarrow C' \cup \triangle abp \subseteq CH(S)$ we now need to prove that  $\forall x \in C', y \in \triangle abp : \bar{xy} \subseteq C' \cup \triangle abp$ consider  $y \in \triangle abp \setminus C'$ 

c is the interception point of  $\bar{xy}$  with the board of C', c must be between the tangents, it follows that  $\bar{cy} \subseteq \triangle abp, \bar{xc} \subseteq C' \Rightarrow \bar{xy} \subseteq C' \cup \triangle abp = C$ 

### **Properties**

#### convex combination

given k points  $\{p_1\dots p_k\}=S\subseteq \mathbb{R}^d$ , a convex combination  $p=\sum\limits_{i=1}^k\lambda_ip_i$ ,  $\sum\lambda_i=1,\lambda_i\geq 0$ 

Theorem:  $CH(S) = \{\sum \lambda_i p_i | \sum \lambda_i = 1, \lambda_i \geq 0\}$ 

### lower bound of the construction algorithm

any construction of a CH(S) has a complexity  $\Omega(n\log n)$ 

### "Rubberband" property

the border of CH(S) in the plane is the shortest curve around S closed and simple

### **Construction in 2d**

given a set S of n points in a plane we want to construct a CH(S) by finding those points in S that appear as vertices of the CH in counter clockwise order

Assumption: no two points in  ${\boldsymbol{S}}$  has the same y coordinate

### Naive algorithm

```
C=empty set #candidates for S
for all pairs p, q : p!=q:
  for all r in S\{p, q}
    if r is left of the line pq:
        ignore p, q
        consider the next p, q
        add p, q to c
        sort c
```

but this algorithm is  $O(n^3)$ , that is not so fast

### Graham's scan

we can use a better approach: "incremental computation"

we add the points one by one

**Upper hull:**  $\hat{CH}(s)$  : the sub-segment of CH(S) with monotonically increasing x-coordinate

**convex vertex:** a vertex  $p_i$  to the right of the line passing through the previous 2 vertices  $p_{i-1}, p_{i-2}$ 



sort s by x coordinate->p1...pn
c\_hat = {p1, p2}
for i = 3 to n:
 c\_hat+={pi}
 while |c\_hat|>2 and pi-2, pi-1, pi in c\_hat form a concave vertex:
 delete pi-1 from c\_hat
analogous for the lower hull

with this algorithm we obtain a complexity of  $O(n \log n)$ , since the while is executet maximum n times, and since the complexity of the sorting is  $O(n \log n)$  the complexity is the one of the sorting, if we use the **radix sort** we can also reach a O(n)

### Gift wrapping(jarvis' march)

if  $ar{pq} \in CH(S) \Rightarrow \exists r \in S: ar{qr} \in CH(S)$ 

notation:  $\angle|(ar{pq},x)|=$  angle between  $ar{pq}$  and the x axis

#### construct the right-hand hull

 $p_0$  si the point in S with the smallest y

 $p^{st}$  is the one with the top most y

 $p_i = p_0$ while  $p_i 
eq p^*$ : delete  $p_i$  from Soutput  $p_i$  $p_{i+1} = \min_{p \in S} \angle |(p_i \bar{p}, x)$ output  $p^*$ 



### running time

let h = |CH(S)| = #points on CH, the while has a complexity of O(n), the initialization of  $O(n \cdot h)$ , and this becomes the overall complexity

the only problem is that the algorithm is pretty much output sensitive, reaching an  $O(n^2)$ 

### Chen's algorithm

this algorithm uses a divide et impera structure, where create mini hulls and perform the gift wrapping.

```
HallG(S, m, h'):
input S={p1...pn}in R2
2>=m<=n
h'>=1
k=round(n/m)
partition S=S1 U...U Sk
for i 0 1...k:
  compute Ci 0 CH(Si)
p1 = latest point in S, output p1
for l = 1...h':
  for i 0 1...k:
    calculate the lower tangent on ci through pi
    qi O points on ci an d tangents
  pi+1 0 find min q in {q1...qk}angle between piq, x
  output pi+1
  if pi+1 = top most point is S:
    output l+1 points
```

return "coonvex hull complete" return "convex hull incomplete"

**NOTE**: if  $h' \ge h$  the if in the nested loop must happen

this time the complexity is  $O(n \log m)$  for the first phase, while each tangent calculation takes  $O(\log n)$  time, the loop is repeated  $O(k \log n)$ , bringing to a total running time of  $O(h' \frac{n}{m} \log m + n \log m)$ , if we choose m = h' we obtain  $O(n \log h')$ 

## **Complexity of a data structure**

a function f(n) representing the size of the output i.e. th ponts+the data structure , given n, the size of input i.e. the number of points

## **Euler's equation**

lent Pbe a convec polyhedron,  $v=|V_p|, e=|E_p|, f=|F_p|$  (number of vertices, edges and faces), then v-e+f=2

### corollary: polyhedron convexity

for every convex polyhedron  $v, e, f, \in \Theta(v, e, f)$ 

## **Convex Hull in 3D**

a randomized and incremental algorithm

input: 
$$S = \{p_1 \dots p_n\}$$

start:

pick the first 2 points  $p_1,p_2$ 

find a  $p_3$  not in the ine of  $p_1 \bar{p}_2$ 

find a  $p_4$  not in the plane of  $p_1,p_2,p_3$ 

 $\Rightarrow$ if you cannot find it go back to one dimension

take the tethraedron passing through  $p_1, p_2, p_3, p_4$ :  $C_4$ 

permute  $p_5 \dots p_n$  randomly for  $p_r = p_5 \dots p_n$ : combine  $C_{r-1}$  and  $p_r$  to get  $C_r$ , the convex hull over  $\{p_1, p_2, p_3, p_4\}$ case 1:  $p_r \in C_{r-1}$   $\rightarrow$ dischard  $p_r$ case 2:  $p_r \notin C_{r-1} \rightarrow$ 



we need to find the front faces, the brute force method will lead to a  ${\cal O}(n^2)$ , so we need to improve

### **Conflict graph**

we maintain 2 conflict sets, for all faces  $f\in C_r$  :

 $P_{conf}(f)$ :all the points that can see f (so is a front face)

 $F_{conf}(p_s)$ :all the faces that can see  $p_f$  (so is a front face)

we say that  $p \in P_{conf}(f)$  is in conflict with f. We now need an auxiliary data structure, a **Bipartite Graph** G, in which we will connect points and faces

$$\forall f \in F_{conf}(p_r)$$
:

delete f from  $C_{r-1}$ 

if one of f's edges is on L:

construct a triangle  $f^\prime$  with  $p_r$  and edge



add f' to  $C_r$ 

the complexity is  $O(|F_{conf}(p_r)|)$ 

#### Initialization of ${\cal G}$

start with  $C_4$ 

test all  $p_5 \dots p_n$  against the 4 faces of  $C_4$ 

### Updating: $C_{r-1} ightarrow C_r$

delete all neighbors of  $p_r$  in G

delete  $p_r$  from G

create new nodes for the new faces

create new edges for conflicts

**NOTE:** if  $f \in C_{r-1}$  and  $f \in C_r$  then  $f \notin P_{confl}(f)$  then  $P_{conf}(f)$  stays the same, so we only compute  $P_{confl}(f)$  for new f's

let f be a "new" face,  $P_{confl}(f) \subseteq P_{confl}(f_1) \cup P_{confl}(f_2)$ , since the **positive** halfspace  $H^+(f) \subseteq H^+(f_1) \cup H^+(f_2)$  and we scan  $P(f_1), P(f_2)$ 

Algo as a whole ; find paying py to for a tetraledron ey := CH (paper py) Cy := CH (pa) ~ py) mit S: for all pm, v25: for all fely: if "conflict" : astallish else in S for r= 5,...,m: if Fcould (pr) = \$ : continue with next r for ell f E Fourfl (pr): debte f from Erm if one of edge e of f is on L ; construct this f' with gr and e add f' to Er adel if to Er create mode in S far f for all ne Pauf (fr) U Pauf (fr), the f' is front facing wrth p: add edge (n, f') to S

#### Lemma

the convex hull in 3d could be computed in expected time  $O(n \log n)$  with a worst case of  $O(n^3)$ 

### **AKL-Toussaint Heuristic**

Find a point  $p_1$  with minimal x-coordinate

Find a point  $p_2$  with minimal y-coordinate

Find a point  $p_3$  with maximal x-coordinate

all 3  $\in CH$ 

delete all  $p \in riangle p_1, p_2, p_3$  (in 3d we need another couple of mi x for z and we have a tethraedron),

repeat for all the sides of the bounding box

#### Extension

```
choose 3 random vectors(4 in 3D)
```

find  $p_i^* = \max_{j=1\dots n} \{ ec{n} \cdot p_j \}$ delete all  $p \in riangle p_1, p_2, p_3$ repeat k times

## **Geometric predicates**

### left/right

we have 3 points  $p,q,r\in\mathbb{R}^2$ , is r left of  $ar{pq}$ ?

immagining to connect the three points in a triangle and spin counterclockwise

$$``left" \iff Area( riangle pqr) > 0$$
, where  $Area( riangle pqr) = rac{1}{2} \det egin{bmatrix} p_x & p_y & 1 \ q_x & q_y & 1 \ r_x & r_y & 1 \end{bmatrix}$ 



### orientation in 3d

the same as above could be done in 3 dimensions, adding a point and working with a tetraedron

we have 4 points  $p,q,r,s\in\mathbb{R}^3$ , is s in front ofof  $p\bar{q}r$ ? if volume(p,q,r,s)>0, where

$$volume(p,q,r,s) = rac{1}{6} \det egin{bmatrix} p_x & p_y & p_z & 1 \ q_x & q_y & q_z & 1 \ r_x & r_y & r_z & 1 \ s_x & s_y & s_z & 1 \end{bmatrix}$$

### finding extreme points of polygon

Given a convex polygon  $p^0,\ldots,p^n$  we want to determine the point  $p^*$  with maximum  $p_y^*$ 

start with a=0m b=n

assume  $p^*$ is between  $p_a, p_b o c = rac{1}{2}(a+b)$ 

case 1:  $y_c < y_a < y_b$  we have a new bracket a' = c, b' = b case 2:  $y_a < y_c < y_b$  we have a new bracket a' = c, b' = b



in time  $O(\log n)$ 





### sort p, q by polar angle

given two points p,q in polar coordinates is  $\phi_p > \phi_q$  ?

solution:  $\iff area(\triangle oqp) > 0$ 

