

## Convex Hulls

## Convexity definition:

given a set $k \subseteq \mathbb{R}^{d}, k$ is convex $\Longleftrightarrow \forall p, q, \in k: \overline{p q} \in k$, i.e. when for each couple of points in $k$ is possible to find a straight line connecting them fully contained in $k$

a convex set

a non convex set

## Lemma:

if $k_{1}, k_{2}$ are both convex sets, then $k_{1} \cap k_{2}$ is convex too

## Convex Hull

the smallest convex set containing a subspace $S \subset \mathbb{R}^{d}, C H(S)=\bigcap_{k \text { convex } \supseteq S} k$. we will assume that $S$ is finite and discrete.

Tangent: given a polygon p in 2 d and a point $q$ outside of $P$, a line touching $P$ in exactly one point and passing through $q$
Theorem: $C H(S)$ is a politope that has vertices in $S$
Proof: by induction over $n=|S|$
for $|S|=3$, the $\mathrm{CH}(\mathrm{S})$ is the triangle made of the points, being the interception of the 3 halfspaces separated by the lines passing through 2 points
for $|S|>3$, we choose a point $p \in S$, create $S^{\prime}=S \backslash\{p\}$ and $C^{\prime}=C H\left(S^{\prime}\right)$, s.t. $C^{\prime} \subseteq$ $S^{\prime} \subseteq S$ and we construct $C H(S)$ with $C^{\prime}$ and $p$

- if $p \in C^{\prime}$ we do nothing
- if $p \notin C^{\prime}$ we find the tangents through $p$ to $C^{\prime} a$
 and $b$, then $C H(S)=C^{\prime} \cup \triangle a b p$
it follows that $\forall$ convex $k \supseteq S: C^{\prime} \subseteq k, \triangle a b p \subseteq k \Rightarrow C^{\prime} \cup \triangle a b p \subseteq C H(S)$ we now need to prove that $\forall x \in C^{\prime}, y \in \triangle a b p: \overline{x y} \subseteq C^{\prime} \cup \triangle a b p$ consider $y \in \triangle a b p \backslash C^{\prime}$
$c$ is the interception point of $\overline{x y}$ with the board of $C^{\prime}, c$ must be between the tangents, it follows that $\overline{c y} \subseteq \triangle a b p, \overline{x c} \subseteq C^{\prime} \Rightarrow \overline{x y} \subseteq C^{\prime} \cup \triangle a b p=C$


## Properties

## convex combination

given $k$ points $\left\{p_{1} \ldots p_{k}\right\}=S \subseteq \mathbb{R}^{d}$, a convex combination $p=\sum_{i=1}^{k} \lambda_{i} p_{i}$,
$\sum \lambda_{i}=1, \lambda_{i} \geq 0$

Theorem: $C H(S)=\left\{\sum \lambda_{i} p_{i} \mid \sum \lambda_{i}=1, \lambda_{i} \geq 0\right\}$

## lower bound of the construction algorithm

any construction of a $C H(S)$ has a complexity $\Omega(n \log n)$

## "Rubberband" property

the border of $C H(S)$ in the plane is the shortest curve around $S$ closed and simple

## Construction in 2d

given a set $S$ of $n$ points in a plane we want to construct a $C H(S)$ by finding those points in $S$ that appear as vertices of the $C H$ in counter clockwise order

Assumption: no two points in $S$ has the same y coordinate

## Naive algorithm

```
C=empty set #candidates for S
for all pairs p, q : p!=q:
    for all r in S\{p, q}
        if r is left of the line pq:
            ignore p, q
            consider the next p, q
    add p, q to c
    sort c
```

but this algorithm is $O\left(n^{3}\right)$, that is not so fast

## Graham's scan

we can use a better approach: "incremental computation"
we add the points one by one
Upper hull: $\hat{C H}(s)$ : the sub-segment of $C H(S)$ with monotonically increasing xcoordinate
convex vertex: a vertex $p_{i}$ to the right of the line passing through the previous 2 vertices $p_{i-1}, p_{i-2}$


```
sort s by x coordinate->p1...pn
c_hat = {p1, p2}
for i = 3 to n:
    c_hat+={pi}
    while |c_hat|>2 and pi-2, pi-1, pi in c_hat form a concave vertex:
        delete pi-1 from c_hat
analogous for the lower hull
```

with this algorithm we obtain a complexity of $O(n \log n)$, since the while is executet maximum $n$ times, and since the complexity of the sorting is $O(n \log n)$ the complexity is the one of the sorting, if we use the radix sort we can also reach a $O(n)$

## Gift wrapping(jarvis' march)

if $\bar{p} q \in C H(S) \Rightarrow \exists r \in S: \bar{q} r \in$ CH(S)
notation: $\angle \mid(\overline{p q}, x)=$ angle between $\overline{p q}$
and the x axis
construct the right-hand hull
$p_{0}$ si the point in $S$ with the smallest y
$p^{*}$ is the one with the top most y
$p_{i}=p_{0}$
while $p_{i} \neq p^{*}$ :
delete $p_{i}$ from $S$
output $p_{i}$

$$
p_{i+1}=\min _{p \in S} \angle \mid\left(\overline{p_{i}} p, x\right)
$$

output $p^{*}$


## running time

let $h=|C H(S)|=\#$ points on $C H$, the while has a complexity of $O(n)$, the initialization of $O(n \cdot h)$, and this becomes the overall complexity
the only problem is that the algorithm is pretty much output sensitive, reaching an $O\left(n^{2}\right)$

## Chen's algorithm

this algorithm uses a divide et impera structure, where create mini hulls and perform the gift wrapping.

```
HallG(S, m, h'):
input S={p1...pn}in R2
2>=m<=n
h'>=1
k=round(n/m)
partition S=S1 U...U Sk
for i 0 1...k:
    compute Ci 0 CH(Si)
p1 = latest point in S, output p1
for l = 1...h':
    for i 0 1...k:
        calculate the lower tangent on ci through pi
        qi 0 points on ci an d tangents
    pi+1 0 find min q in {q1...qk}angle between piq, x
    output pi+1
    if pi+1 = top most point is S:
        output l+1 points
```

```
        return "coonvex hull complete"
return "convex hull incomplete"
```

NOTE: if $h^{\prime} \geq h$ the if in the nested loop must happen
this time the complexity is $O(n \log m)$ for the first phase, while each tangent calculation takes $O(\log n)$ time, the loop is repeated $O(k \log n)$, bringing to a total running time of $O\left(h^{\prime} \frac{n}{m} \log m+n \log m\right)$, if we choose $m=h^{\prime}$ we obtain $O\left(n \log h^{\prime}\right)$

## Complexity of a data structure

a function $f(n)$ representing the size of the output i.e. th ponts+the data structure, given $n$, the size of input i.e. the number of points

## Euler's equation

lent $P$ be a convec polyhedron, $v=\left|V_{p}\right|, e=\left|E_{p}\right|, f=\left|F_{p}\right|$ (number of vertices, edges and faces), then $v-e+f=2$

## corollary: polyhedron convexity

for every convex polyhedron $v, e, f, \in \Theta(v, e, f)$

## Convex Hull in 3D

a randomized and incremental algorithm
input: $S=\left\{p_{1} \ldots p_{n}\right\}$
start:
pick the first 2 points $p_{1}, p_{2}$
find a $p_{3}$ not in the ine of $p_{1} p_{2}$
find a $p_{4}$ not in the plane of $p_{1}, p_{2}, p_{3}$
$\Rightarrow$ if you cannot find it go back to one dimension
take the tethraedron passing through $p_{1}, p_{2}, p_{3}, p_{4}: C_{4}$
permute $p_{5} \ldots p_{n}$ randomly
for $p_{r}=p_{5} \ldots p_{n}$ :
combine $C_{r-1}$ and $p_{r}$ to get $C_{r}$, the convex hull over $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
case 1: $p_{r} \in C_{r-1} \rightarrow$ dischard $p_{r}$
case 2: $p_{r} \notin C_{r-1} \rightarrow$

we need to find the front faces, the brute force method will lead to a $O\left(n^{2}\right)$, so we need to improve

## Conflict graph

we maintain 2 conflict sets, for all faces $f \in C_{r}$ : $P_{\text {conf }}(f)$ :all the points that can see $f$ (so is a front face)
$F_{\text {conf }}\left(p_{s}\right)$ :all the faces that can see $p_{f}$ (so is a front face)
we say that $p \in P_{\text {conf }}(f)$ is in conflict with $f$. We now need an auxiliary data structure, a Bipartite


Graph $G$, in which we will connect points and faces
$\forall f \in F_{\text {conf }}\left(p_{r}\right):$
delete $f$ from $C_{r-1}$
if one of $f$ 's edges is on $L$ :
construct a triangle $f^{\prime}$ with $p_{r}$ and edge

$$
\text { add } f^{\prime} \text { to } C_{r}
$$

the complexity is $O\left(\left|F_{\text {conf }}\left(p_{r}\right)\right|\right)$

## Initialization of $G$

start with $C_{4}$
test all $p_{5} \ldots p_{n}$ against the 4 faces of $C_{4}$
Updating: $C_{r-1} \rightarrow C_{r}$
delete all neighbors of $p_{r}$ in $G$
delete $p_{r}$ from $G$
create new nodes for the new faces
create new edges for conflicts
NOTE: if $f \in C_{r-1}$ and $f \in C_{r}$ then $f \notin P_{\text {confl }}(f)$ then $P_{\text {conf }}(f)$ stays the same, so we only compute $P_{\text {confl }}(f)$ for new $f$ 's let $f$ be a "new" face, $P_{\text {confl }}(f) \subseteq P_{\text {confl }}\left(f_{1}\right) \cup P_{\text {confl }}\left(f_{2}\right)$, since the positive halfspace $H^{+}(f) \subseteq H^{+}\left(f_{1}\right) \cup H^{+}\left(f_{2}\right)$ and we scan $P\left(f_{1}\right), P\left(f_{2}\right)$


$$
\begin{aligned}
& \text { Argo is a mable: } \\
& \text { find par:, } \text { rus }_{4} \text { to one a tetrahedron } \\
& e_{4}:=C H\left(p_{1}, \ldots, p_{4}\right) \\
& \text { init } \mathcal{H} \text { : for all pr, } v \geqslant 5 \text { : for all } f \in e_{4} \text { : if "couftict" : establish } \\
& \text { for } r=5, \ldots, m \text { : } \\
& \text { if } F_{\text {conf }}\left(p_{r}\right)=\phi \text { : } \\
& \text { for all } f \in \text { Fofl (pr): } \\
& \text { delete } f \text { from } e_{r-n} \\
& \text { if one of edges } e \text { of } f \text { is on } L \text { : } \\
& \text { add of' } t_{0} e_{r} \\
& \text { create mode in } \delta \text { far } f \text { ' } \\
& \text { for all } p \in P_{\text {come }}\left(f_{2}\right) \cup P_{c} \text { fe }\left(f_{2}\right) \text {, } \\
& \begin{array}{l}
\text { if } f^{\prime} \text { is frat facing wat. } p \text { : } \\
\text { add edge (p, f') to E }
\end{array}
\end{aligned}
$$

## Lemma

the convex hull in Sd could be computed in expected time $O(n \log n)$ with a worst case of $O\left(n^{3}\right)$

## AKL-Toussaint Heuristic

Find a point $p_{1}$ with minimal x-coordinate
Find a point $p_{2}$ with minimal y-coordinate
Find a point $p_{3}$ with maximal x-coordinate
all $3 \in C H$
delete all $p \in \triangle p_{1}, p_{2}, p_{3}$ (in Sd we need another couple of mix for z and we have a tethraedron),
repeat for all the sides of the bounding box

## Extension

choose 3 random vectors (4 in 3D)
find $p_{i}^{*}=\max _{j=1 \ldots . . n}\left\{\vec{n} \cdot p_{j}\right\}$
delete all $p \in \triangle p_{1}, p_{2}, p_{3}$
repeat $k$ times

## Geometric predicates

## left/right

we have 3 points $p, q, r \in \mathbb{R}^{2}$, is $r$ left of $\overline{p q}$ ?
immagining to connect the three points in a triangle and spin counterclockwise

$$
\text { "left" } \Longleftrightarrow \operatorname{Area}(\triangle p q r)>0 \text {, where } \operatorname{Area}(\triangle p q r)=\frac{1}{2} \operatorname{det}\left[\begin{array}{lll}
p_{x} & p_{y} & 1 \\
q_{x} & q_{y} & 1 \\
r_{x} & r_{y} & 1
\end{array}\right]
$$



## orientation in 3d

the same as above could be done in 3 dimensions, adding a point and working with a tetraedron we have 4 points $p, q, r, s \in \mathbb{R}^{3}$, is $s$ in front ofof $p \bar{q} r$ ? if $\operatorname{volume}(p, q, r, s)>0$, where
$\operatorname{volume}(p, q, r, s)=\frac{1}{6} \operatorname{det}\left[\begin{array}{cccc}p_{x} & p_{y} & p_{z} & 1 \\ q_{x} & q_{y} & q_{z} & 1 \\ r_{x} & r_{y} & r_{z} & 1 \\ s_{x} & s_{y} & s_{z} & 1\end{array}\right]$

## finding extreme points of polygon

Given a convex polygon $p^{0}, \ldots, p^{n}$ we want to determine the point $p^{*}$ with maximum $p_{y}^{*}$
start with $\mathrm{a}=0 \mathrm{~m} \mathrm{~b}=\mathrm{n}$
assume $p^{*}$ is between $p_{a}, p_{b} \rightarrow c=\frac{1}{2}(a+b)$
case 1: $y_{c}<y_{a}<y_{b}$ we have a new bracket $a^{\prime}=$ $c, b^{\prime}=b$ case 2: $y_{a}<y_{c}<y_{b}$ we have a new bracket $a^{\prime}=c, b^{\prime}=b$

:
in time $O(\log n)$


## sort $p, q$ by polar angle

given two points $p, q$ in polar coordinates is $\phi_{p}>$ $\phi_{q}$ ?
solution: $\Longleftrightarrow \operatorname{area}(\triangle o q p)>0$


